# A CONSPIRACY OF MEDIOCRITY

Kate van Niekerk

DESIGNERS SHOULD BE
AT THE FOREFRONT OF

INDUSTRY. FOR THIS TO

HAPPEN THEY NEED TO

REASSESS PERCEPTIONS

OF THEIR OWN ROLE,

BE WILLING, TO ADOPT A

MORE ASSERTIVE

STANCE AND ACCEPT

RESPONSIBILITY FOR

CHANGING ATTITUDES

TOWARDS THE

**FUNCTION AND VALUE** 

OF DESIGN.

There is a growing interest today in the history and theory of design. General works such as John Heskett's excellent book, *Industrial Design* (1980), are supplemented by more specialized studies on aspects including the industrial designer himself (Sparke 1983), industrial design in specific periods (Gloag 1962) and design for specific industries (Polak 1975).

As Heskett has observed, these studies tend to adopt one of two approaches. In the first, the product is seen as the result of

... an autonomous inward looking relationship between designer and product. The emphasis is placed on individual achievement, and the analysis of products is focused on identifying unique qualities of industrial form (Heskett 1980: 7).

The second approach sees design as a social phenomenon and examines the product in contexts unrelated to the individual will of the designer (Heskett 1980:8).

I should like to suggest that industrial design, and by this I refer to the development, styling and upgrading of consumer products, may also be examined in the light of a dynamic interrelationship of certain factors. These factors include developments in machine technology; the linking of manufacturer and consumer by merchant and retailer; the role of the consumer and finally, the education of the industrial designer.

## MACHINE TECHNOLOGY

In considering the factors influencing the design of any machine-made product, a logical starting point is an examination of the machine technology available to create it. To what extent is design influenced by machine technology, or indeed, machine technology by design?

An interesting exercise here is to study the history of a particular product, tracing the development of machine technology and its direct effect upon the design of the article. If we examine ceramic wall tiles, for instance, we see that Sadler's invention of the ceramic transfer process in 1756 widened the scope for design in one area and narrowed it in others. Previous to this invention, tiles had been hand painted, and the designs reflected this in their simplicity. The transfer printing process meant that one original design was printed in repeat onto the paper, coated with varnish and then lifted to the tile which was then refired. This, of course, meant that tiles could not only be decorated much more quickly but that complex and rich patterns could be used as there was only one original. However, the tiles then immediately took on a very mechanical, mass-produced appearance. All creative individuality was lost along with the simplicity of the design (Ellis 1982).

The same can be said of the invention of the Italian monoporosa system during the last decade. Monoporosa' means fast fired single fired tiles. Instead of tiles being manufactured by the traditional twice fired method which takes many days, tiles are glazed, printed and fired within one hour. This saves manufacturers large amounts of money, but because the decoration is applied to the unfired tile which is very fragile, it has to be greatly simplified. This opened new doorways into the decorating of border tiles and panels, using low fired colours on finished ware (Ellis 1982).

In the real world of industry in South Africa today, I suggest that the design usually conforms to the machine. Major changes and advances in technology have generally been adopted by industry through a desire to save on time, labour and, ultimately, money. The improvement of design is rarely seen as a motivating factor. This emphasis seems to have changed little over time. The attitude is aptly summed up by the following quote from a textile designer, working in the 1930s:

The artist's creative genius is devoted to the everlasting struggle to cram a quart of genius into a pint pot of price (*Nottingham Guardian* 1937).

#### MARKETING

In his 1888 presidential address to the National Association for the Advancement of Art in Industry, Walter Crane said:

The man of commerce - the controller of industry - seeks only to make a saleable article. He is influenced in his industrial production simply by this object. He takes the opinions of the salesmen of the trade, not of artists, and so far as any artistic standard or aim enters into the produce of his manufactory, it is strictly checked by the average of what his

rivals are doing, and the discovery of what the big public can be persuaded to buy (Crane 1888).

This could have been written in 1988, or indeed last week, as, on the whole, this is exactly what still happens in South African industry today.

Many manufacturing companies conduct market research exclusively among merchants and retailers, their 'salesmen of the trade', and lay great store by their opinion. Merchant and retailer also inflict their influence upon design in terms of money. In a time of recession, it is the merchant who can, and does, put pressure upon the manufacturer to lower prices.

Often the manufacturer's response is to substitute cheaper materials, or to reduce production processes such as the number of colour

applications or to simplify form, all of which have an immediate effect on design. It is also the merchant who may belittle the efforts of the local design and manufacturing industry in favour of overseas products, for which he is often willing to pay a higher price.

### THE CONSUMER

The influence of the consumer upon design may be seen as the most important factor in this study. After all, a manufacturer will not embark on production unless there is a market and demand for a product. Or will

he? Who creates the demand? Is it the public or the manufacturer? Here in South Africa, the answer falls in two parts.

At one level, which we might call a 'third world' level, the design of artifacts arises purely from need. Many artifacts are made on a craft basis, often demonstrating amazing ingenuity. A good example of this is the production of crocheted rugs from strips of plastic shopping bags

used by the large supermarket chains. Not only are these rugs eminently suitable for covering bare concrete or earth floors, they are hardwearing and washable. They are often very attractive, crocheted in brightly coloured rings with scraps of printed word producing flecks of colour. Finally, they are the perfect example of a 'green' product, being made from 100 per cent recycled material.

Several other products at this level are sponsored by large corporations who also use considerable ingenuity to produce items such as building materials, cooking and irrigation equipment. Here, the needs of the consumer (practical and financial) dictate the eventual form.

At another level, which we might call a `first world level', the picture is different. Here the designs are dictated largely by `fashion' or `contemporary taste' or `modern trends'. However one labels it, it is a pervasive force in the design of industrially produced items from clothing to furniture to cars. Planned obsolescence is built in to the financial advantage of the manufacturer and to assuage the incessant thirst of the consumer for novelty.

In South Africa these trends are almost exclusively driven by European fashion tastes. Because of this, manufacturers and, in turn, designers are forced to provide designs to fit. Certainly, no manufacturer is going to embark upon a totally new line, the theme of which has not already been approved in Europe. Similarly, no industrial designer is going to risk his job by insisting on the production of lines for which there is no established overseas market.

This picture is not the same the world over. In some countries, Germany and Japan for instance, there seems to be a strong awareness of design among the buying public which directly influences manufacturers. The reason for this awareness lies in our next factor, design education.

## DESIGN EDUCATION

In Japan, design education is not seen solely as the process of teaching students how to design. Instead, it is seen in a much broader sense as a process to educate all members of the public, as well as businesses and manufacturers about the importance of

design. Design awareness is taught at school level. The Government sponsors exhibitions, competitions and design centres. Manufacturers are forced to enter the arena flying the banner of good design, or not at all.

The subject of training designers for industry is both wide and complex, and has a history stretching back in Europe for more than 150 years. The Bauhaus was established in Germany in 1919 and became the embodiment of ideas on training the designer for industry. In the United Kingdom, a government report published in 1936 resulted in the establishment of a Central School of Design in London (which later became the Royal College of Art) and a number of provincial schools expressly intended to serve local industry. Thus, in Stoke-on-Trent the school was intended to train designers for the pottery industry, in Nottingham for the lacemaking industry etc. (Ellis 1983).

Theoretically, the link between the educational institution and industry is obvious. It is industry which should be employing most of the designers turned out by the design schools. It is through industry that the mass produced product can be made available to a public which deserves objects that are well designed and aesthetically pleasing.

However, even from the start, the system of training designers for industry has, by and large, failed and this interestingly, for two contradictory reasons. One argument is that design courses are too 'arty', graduating students who have no idea of production constraints, and who therefore cannot design until a period of retraining has been undertaken. In historical studies of both the pottery and machine-made lace industries in Britain, I found that the vast majority of the manufacturers were not eager to employ graduates of the design schools, despite much theoretical debate and

endless government reports on the subject (Ellis 1984).

On the other hand, where the design schools have tried to tailor their courses to the needs of industry, they have been accused of turning out uncreative drones. In recent years, British design students have been heavily pressured to produce commercial work suitable for industry. Having done this, students have found their final degree shows slated by critics and manufacturers alike. In South Africa, the so-called 'mismatch' between education and industry more often than not. constitutes the substance of published articles and public debate on design education.

## TOWARDS A DESIGN-LED INDUSTRY

Often the four factors described above relate in an arbitrary fashion and, in so doing, result on the whole, in a level field of design mediocrity with only occasional peaks of excellence. Where these peaks occur, their source can usually be traced to a designer who has recognized himself as the pivotal point, controlling factors, rather than allowing himself to be controlled by them.

I believe that it is time for industrial designers in South Africa to reassess their roles, to take a positive stand and to begin taking proactive steps towards creating a design-led industry. They must stop seeing themselves as slaves to machinery, at the mercy of cheap production and powerless to raise the present quality of South African goods.

Dr Robert Blaich, now retired Managing Director of Philips Corporate Industrial Design Division, has this to say:

Any company that wants to survive in the 1990s knows that it will do so only if it can achieve a competitive edge. Design as a strategy for corporate competitiveness can deliver the quality advantage, the innovative edge that will be essential for survival. The problem is that the concept of design as a strategic tool for business management is one that is still relatively unexplored by most businesses and under-utilized by all but a few companies (Blaich 1990).

He suggests that the design manager in a company should take the initiative to communicate and interact with all other functions in the company such as production, engineering, marketing and sales. He says:

Design management establishes the fact that a company has a design program instead of an informal activity (Blaich 1990).

If we accept that the designer must play a proactive rather than a submissive role in industry, then the skills we teach the fledgling designer must equip him to adopt such a role. It is my firm belief that the industrial part of a designer's training must be undertaken by the industry itself, and the creative side by an educational institution.

In this system of design education the key word for the fledgling designer must be `creativity'. Projects should be completely divorced from any idea of commercialism. The student should be encouraged to read widely and to cultivate broad interests. The most important aspects of this education would, however, be the development of personal attributes. These include courage, self-confidence and drive, which I firmly believe can be deliberately fostered in the right sort of educational atmosphere.

The next stage must be to educate the manufacturing industry to accept these designers. This is probably impossible until an effective and widespread design awareness programme (supported by Government) is implemented in South Africa. More positive steps should currently be taken by design educators to contact industry and build up lines of communication and information.

Once the new designer enters industry he enters a fight for survival, a fight from which some designers will retire and others will be shown the door. However, the best (and I don't necessarily mean the best designers) will survive and will learn the true mechanics of how they are constrained.

Working closely with production they must learn to understand the technical constraints, and not waste large amounts of time and money trying to force the production of something simply not possible. Working closely with marketing and sales, they must learn to understand market implications. A thorough understanding of both sides will enable designers to position themselves as the vital link between production and sales and to enter management roles.

It is perhaps at this stage in designers' careers that a specialist part-time course in Design Management would be of greatest benefit. Design managers can be truly influential concerning the quality of design eventually offered to the public. Yes, they are constrained by technology, but now that they understand the technology, they can creatively suggest changes to move things along. Yes, they are constrained by what the public wants, but now that they understand how the market works, they can produce designs which are both acceptable and aesthetically pleasing, and even capable of incrementally improving public taste.

By recognizing themselves as the pivotal point between production, sales and the consumer, experienced and professional designers can strive to design articles which will be of optimum benefit to all three. By understanding their own position more clearly, they can make positive moves towards educating and informing others on the importance of good design, to the greater benefit of society, industry and the design profession.

## BIBLIOGRAPHY

Blaich, R. 1990. Design Management as a Strategy for a Competitive Edge. Paper presented at a seminar `Design for Economic Survival' Johannesburg.

Crane, W. Presidential Address to the National Association for the Advancement of Art in Industry, delivered in 1888.

Ellis, C.R. 1982. The Contemporary British Ceramic Tile Industry. Unpublished Honours Thesis, North Staffordshire Polytechnic.

Ellis, C.R. 1983. Design and Design Education for the Ceramics Industry - An Historical Study. Unpublished MA Paper, Royal College of Art.

Ellis, C.R. 1984. Lace and Raschel Nets. Factors Influencing their Design in Britain 1846 - 1984. Unpublished MA Thesis, Royal College of Art.

Gloag, J. 1962. Victorian Taste: Some Aspects of Architecture and Industrial Design from 1820 -1900. London: David & Charles.

Heskett, J. 1980. *Industrial Design*. London: Thames & Hudson.

Nottingham Guardian, 8 February 1937.

Polak, A. 1975. Glass, its Makers and its Public. London: George Allen & Unwin.

Sparke, P. 1983. Consultant Design: The History and Practice of the Designer in Industry. London: Pembridge Press Ltd.